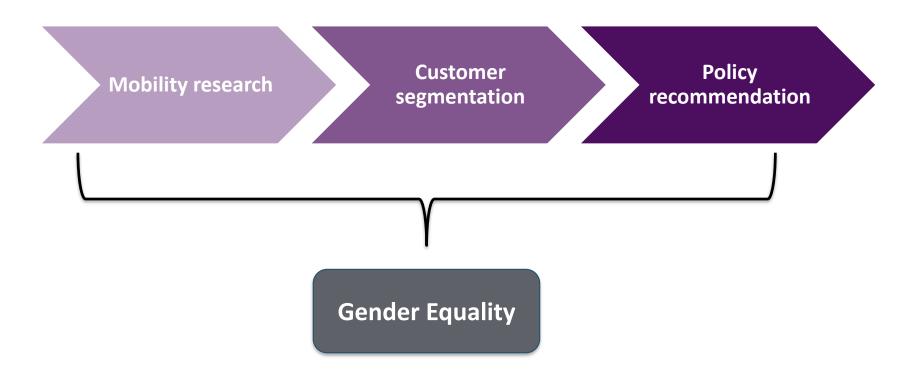
Gender differences in transport patterns in Budapest, and their relevance for mobility planning

Diana Kimmer BKK Centre for Budapest Transport 2022.05.17



Path toward gender equality

Modal Split dataset – household survey

Representativity

- Representative of Budapest (1.7 million habitant, 525 km²)
- n=16515

Respondents

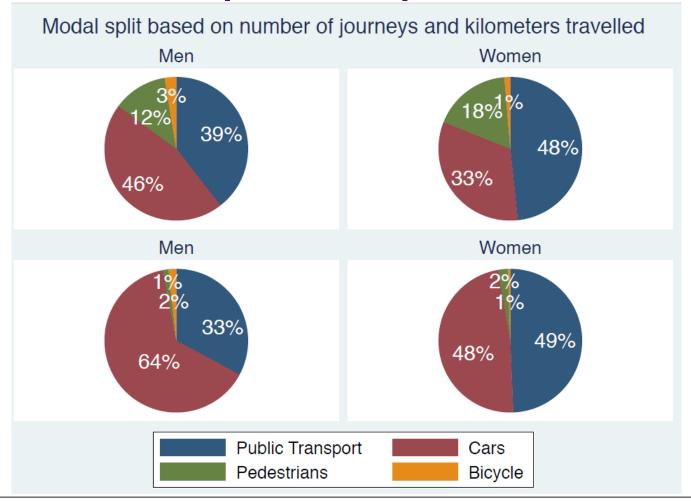
 Commuters in Budapest and / or in a 30-kilometer agglomeration (measured from the administrative boundary) on pre-determined weekdays

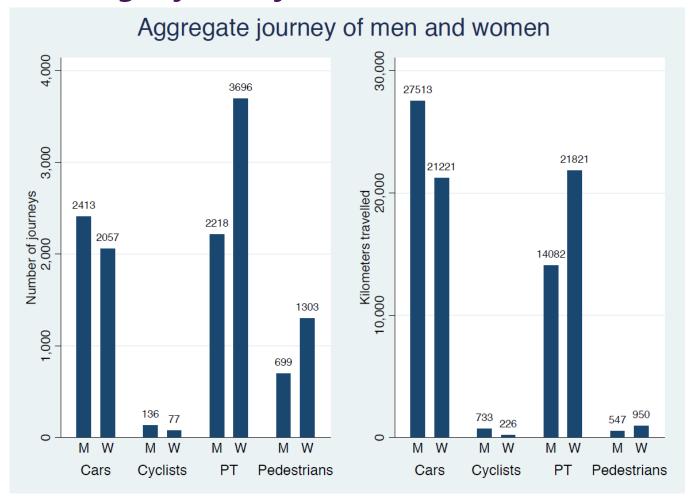
Data Collection & Variables

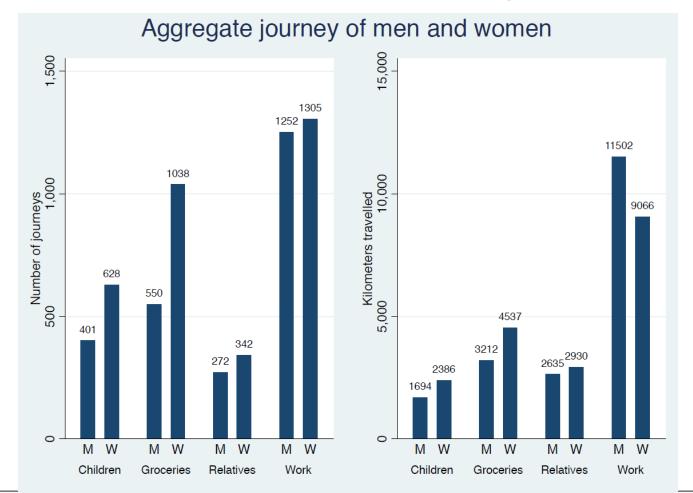
- All previous day's travel activity, age, highest level of education, economic activity, subjective income levels
- 2021. October 12-14 and 19-20

Methodology

- Descriptive statistics
- Probit regression

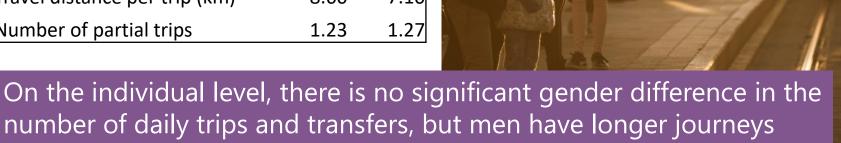





Women walk and use public transport more often

Men have longer journeys than women

Household related trip purposes are higher for women



Descriptive statistics

Aggregated, women travel more both in terms of distance and

number of journeys

Average trips / day / person						
	Men	Women				
Number of trips	2.36	2.50				
Number of non-commuting trips	1.23	1.32				
Travel distance per trip (km)	8.60	7.10				
Number of partial trips	1.23	1.27				

Correlation between transport modes and demography

Correlations					
	Gender: Men (1) - Women (2)	Transport mode			
Transport mode	-0.1228	1			
Kilometer travelled	-0.0689	0.3105			
Economic activity	-0.0676	0.1804			
Travel purpose	0.0741	-0.1220			
Educational attainment	0.0391	0.1435			
Subjective income level	0.0008	0.1073			

Women tend to use more sustainable transport modes. Car use positively correlates with the length of the trip.

Beyond descriptive statistics, study of causal links

What aspects influence car use?

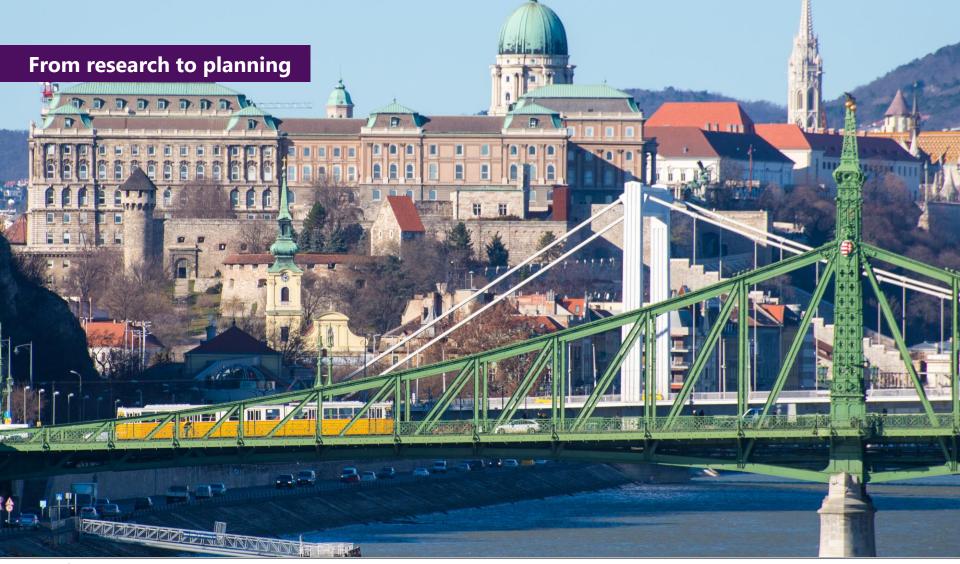
- Probit regression $Y_{ij} = \alpha + \beta P_i + \gamma T_{ij} + \varepsilon_{ij}$
- Y_{ij} : Trip was made by car or not (0,1)
- P_i : Personal characteristics (gender, age, educational attainment, subjective income level)
- T_{ij} : Trip characteristics (distance, purpose of the trip)
- Cluster by starting point (area)

Cross sectional study (2021), first results

Factors influencing car use

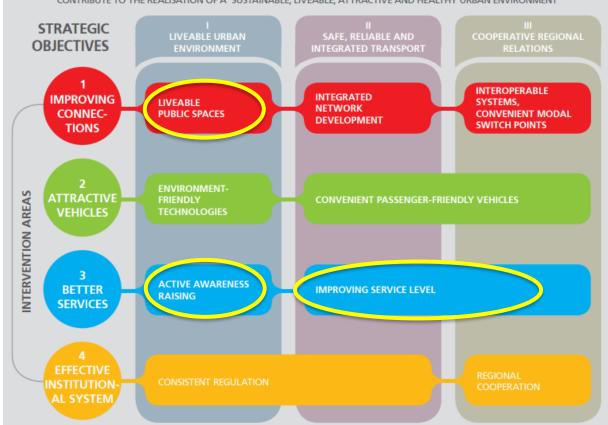
Probit regression

Car user	Coef.	St.Err.	t-value	p-value	[95%		Sig
Probit regression				-	Conf	Interval]	
Gender Gender	37	.099	-3.73	0	564	176	***
Travel distance (km)	<mark>.03</mark>	.018	1.66	.098	006	.066	*
Age	005	.001	-5.15	0	007	003	***
Income	.437	.079	5.53	0	.282	.591	***
Economic activity	.148	.023	6.39	0	.102	.193	***
Education	.076	.034	2.21	.027	.009	.144	**
Trip purpose	.038	.029	1.31	.19	019	.094	
Constant	-2.322	.312	-7.44	0	-2.935	-1.71	***
Mean dependent var	0.403 SD dependent var						0.491
Pseudo r-squared	0.130 Number of obs				4676		
Chi-square			. Prob >	chi2			
Akaike crit. (AIC)		5486.363 Bayesian crit. (BIC)				549	92.813


Marginal effects

Marginal effects after probit y = Pr(autos) (predict) = .40170282

variable	dy/dx	Std.Err.	Z	P>z	[95%	C.I.
<mark>Gender</mark>	-0.143	0.042	-3.410	0.001	-0.225	-0.061	1.544
Travel distance (km)	0.012	0.007	1.590	0.112	-0.003	0.026	13.374
Age	-0.002	0.000	-5.910	0.000	-0.003	-0.001	42.023
<mark>Income</mark>	0.169	0.026	6.410	0.000	0.117	0.221	3.822
Economic activity	0.057	0.008	7.600	0.000	0.042	0.072	3.342
Education	0.029	0.014	2.100	0.036	0.002	0.057	2.785
Trip purpose	0.015	0.011	1.350	0.176	-0.007	0.036	2.170


Budapest Mobility Plan SUMP of Budapest

FUTURE VISION

BUDAPEST IS A LIVEABLE AND ATTRACTIVE CITY, ESTEEMED MEMBER OF THE EUROPEAN CITY
NETWORK AS AN INNOVATIVE ECONOMIC AND CULTURAL CENTRE FOR THE COUNTRY AND THE REGION

OVERALL OBJECTIVE

THE TRANSPORT SYSTEM OF THE CAPITAL NEEDS TO IMPROVE THE COMPETITIVENESS OF BUDAPEST AND TO CONTRIBUTE TO THE REALISATION OF A SUSTAINABLE, LIVEABLE, ATTRACTIVE AND HEALTHY URBAN ENVIRONMENT

Policy recommendations and insights

Liveable public spaces

- Safe and comfortable bicycle network
- Pedestrian friendly developments, tailored to different social and gender needs

Active Awareness raising

- Cycling promotion for women
- Promoting public transport and walking for men

Improving service level

 Improving safety and security on vehicles and stops, based on different gender needs

Thank you for your attention!

Diana.Kimmer@bkk.hu

